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This paper considers the relationship between the multiple singular manifold 
method (MSMM) and the extended direct method (EDM) for studying partial 
differential equations. It is shown that the similarity reductions using EDM can 
be obtained by MSMM. The prototype example for illustrating the approach is 
the Burgers equation, which is the simplest evolution equation to embody 
nonlinearity and dissipation. As a conclusion of the MSMM, we obtain a set of 
B~icklund transformations of the Burgers equation. 

1. I N T R O D U C T I O N  

In the study of partial differential equations (PDEs), the discovery of  
exact or special solutions has great theoretical and practical importance. 
Recently several new methods for obtaining similarity reductions for PDEs 
have been developed, as follows: 

(a) The symmetry group method. The classical Lie group method for 
finding symmetry reductions of PDEs was first introduced by Lie (1881). 
Bluman and Cole (1969) extended Lie's reduction method to include nonclas- 
sical symmetry groups, where the invariance of  PDEs is only required on its 
intersection with the invariance surface condition characterizing the group 
functions, which is the so-called nonclassical symmetry method or the method 
of conditional symmetry. Later, Olver and Rosenau (1986) proposed an exten- 
sion of the nonclassical method, but their framework appears to be too general 
to be practical. Recently, Fokas and Liu (1994) introduced the concept of 
generalized conditional symmetry, which can be applied to derive new reduc- 
tions for a class of PDEs (Qu, 1996). 
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(b) The direct method. Clarkson and Kruskal (1989) introduced an 
algorithmic method which reduces a PDE to a single ordinary differential 
equation (ODE) (Hereafter, we refer to this as the direct method to distinguish 
it from the EDM), and which was developed and subsequently applied to 
many PDEs arising in a wide variety of physical systems. More recently, 
Hood (1995) extended the direct method to a more general case; we refer to 
this as the extended direct method (EDM). The idea is to seek a transformation 
which reduces the given PDE to a system of ODEs in p(~) and q('q) by means 
of an ansatz 

u(x, t) = or(x, t) + ~3(x, t)p(~) + ~l(X, t)q('q) (1) 

other than the original ansatz due to Clarkson and Kruskal (1989) 

u(x, t) = a(x, t) + ~3(x, t)p(~) (2) 

for the Burgers equation 

ut + uux + Uxx = 0 (3) 

The EDM will enable a wide class of new solutions to be found. 
(c) The singular manifold method. The generalization of the Painlevd 

analysis to partial differential equations without referring to ODEs has been 
formulated by Weiss et al. (1983) and then developed further in series of 
papers (Weiss, 1983, 1984, 1985). Roughly speaking, a PDE possesses the 
Painlevd property if its solutions are single-valued about movable singularity 
manifolds. The approach requires that solutions of the PDE can be written 
in Painlev~ series 

u(x, t) = ~ uj(x, t)d? j-~ (4) 
o 

where ~b(x, t) is an arbitrary analytic function depending on initial conditions 
that will be called the movable singularity manifold. For us it is more important 
here to concentrate on the so-called singular manifold method, which empha- 
sizes only the solutions which arise in the truncation of the series (4) as 

u(x, t) = ~ uj(x, t)r~ j-~ (5) 
o 

Recently Estevez et al. (1993; Gordoa and Estevez, 1994) presented a 
unified treatment of a modified singular manifold expansion method as an 
improved variant of the Painlev~ analysis for PDEs with two branches in 
the Painlev~ expansion. The solution can be expressed in the form 

n - I  n - I  

u = u, + ~ uj~bJ-" + ~ vjcrJ-" (6) 
0 0 
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We call this method the double singular manifold method. If  the number of 
singular manifolds is n, n ~ 2, we refer to it as the multiple singular manifold 
method (MSMM). 

The relationship among the above three approaches was treated in (Nucci 
and Clarkson, 1992; Arrigo et aL, 1993; Estevez et al., 1992; Estevez and 
Gordoa, 1995). The aim of the present paper is to discuss the connection 
between MSMM and the EDM by using the Burgers equation as an illustrative 
example. The outline of this paper is as follows. In Section 2, we give a 
brief discussion of double singular manifold method for the Burgers equation. 
The relationship between the double singular manifold and the EDM is 
presented in Section 3. In Section 4, we obtain a set of new B~cklund 
transformations of the Burgers equation by MSMM. Section 5 is a summary 
and discussion of our results. 

2. MULTIPLE SINGULAR MANIFOLD METHOD OF 
BURGERS EQUATION 

The solution expansion of the Burgers equation with n-singular manifold 
takes the form 

u = 1 3  + ~] uj (7) 
j=l ~j 

where uj, j = 1, 2 . . . . .  n, are arbitrary analytic functions in a neighborhood 
of d~j = 0, j = 1, 2 . . . . .  n. Without loss of generality, we consider the case 
n = 2, i.e., the case of double singular manifolds. Hence (7) reduces to 

Ul l/2 
u = 13 + -~ + -or (8) 

Four cases arise in terms of ~b and or. 

2.1. ~bxorx 4= 0. Inserting expansion (8) in (3), one obtains 

ut = 2~x, u2 = 2orx (9) 

and ~b, or, 13 are constrained by 

or, orx~ +, +x~ orx 
[3 = - (10) 

or~ or~ +x +x or 

13, + 1313x + 13xx = 0 (11) 

The substitution of (10) into (11) implies or satisfying 

0t ~ - 2 ~ x x \ ~ ]  + 2 ~ x  z ~ +~xx {or;x} = 0  (12) 



1332 Qu 

where 

{or;x} =~xx ~ - 2 \ ~ x x ]  (13) 

is the Schwarzian derivative. 

2.2.4)x = orx = O, i.e., 4) and or are characteristic manifolds. Substituting 
(8) into (3), we have 

ul = 4),x + a l ( t ) ,  

and the compatibility condition 

13, + 13~ + 1313x = o 

or tt X2 
13(ort X + 0/-2) = --~--- -- OL2t x + Or3(/) 

0, ,x+o,) :  (o, + 

U 2 ~" O'tX + O~2(t ) (14) 

Otlor t 

or 

(15) 

(16) 

+ 4 ) ~ 2 ) X +  Or4(/) 

(17) 

where ai, i = 1, 2, 3, 4, are functions of t to be determined. 
It follows from (15)-(17) that 

D2 
4) = D n  + - -  (18) 

or 

with two arbitrary constants Dj and D2. The 0% cx3, and a4 can be determined 
by eq. 

2.3.4)x 4: 0, or~ = 0. Inserting (8) in (3), we obtain 

U 1 = 24)~, u2 ~- ort x "4- O/.2(t ) (19) 

and a system of equations for 13, 4), and or: 

13, + 13x~ + 1313x = 0 (20) 

4), 4),~ or,x + a2(n 
13 - (21)  

4)x 4)~ 

or tt x2 
13(ort X "4- Os -- OtztX -4- Ot3(t ) (22) 

2 

where e~2(t) and (/3(0 are also functions of t to be determined. 
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2.4. +x = 0, ~ ~ 0. Substituting (8) into (3) and taking into account 
~b~ = 0, tr~ # 0, one obtains 

u, = + , x  + ~l( t ) ,  

with +, tr, and 13 obeying 

13, + 13x  + 1313x = 0 

u2 = 2trx (23) 

(24) 

(3" t O'xx 
13 = (25) 

cr x tr~ 

2crx ~btt x2 
13(+,x + oq(t) + . . . .  a l ,x  + a3(0 (26) 

~r 2 

where an and oLz are two functions of t to be determined. 
It is worth noting that the above analysis will play a fundamental role 

in discussing the relationship between MSMM and EDM. 

3. DOUBLE SINGULAR MANIFOLD METHOD AND ED M 

As mentioned in the Introduction, Hood (1995) proposed an extended 
version of  the direct method for finding similarity reductions of PDEs and 
applied this to compute new classes of solutions of the Burgers equation by 
reduction to a pair of  ODEs in terms of  the ansatz (1). To establish the 
relationship of  the double singular manifold method and the EDM, we impose 
that the double singular manifold ~b and cr must be just functions of the 
reduced variables ~ and "q, respectively. Then we will show that the similarity 
reductions of  the Burgers equation using EDM can be obtained by the double 
singular manifold method of the previous section. Four cases corresponding 
to Section 2 are considered separately. 

3.1. d~x :/: 0, trx #: 0. We assume that the reduced variables ~ and "q take 
the form 

= ot(t)x + O(t), "q = IX(t)x + v( t )  (27) 

The substitution of (27) into (10) gives 

13 a t x  + Ot ~ tr~ = at - 2 i x ( t ) -  (28) 

To continue, we distinguish three subcases: 

3.1.1. "q = k~, k = const. If we choose 

q~ = cl exp(-2h3~ 2) d~ + c2 (29) 

cr = c3 exp - d~ , X3 = const 
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Hereafter ci, i = 1, 2 . . . . .  denote arbitrary constants. Then (28) becomes 

cttx + Ot 
13 = - - -  + 4h3ct(t)~ + ket(t)q('q) (30) 

ot 

which is nothing but the reduction Ansatz of III.A.1 from Hood (1995). 

3.1.2. "q :~ k~, k = const. Taking 

f l  ( I0 q q ~ )  ) 
(1) = C4 exp(--h3~ 2) d~ + c5, or = C 6 exp - ~ d'q (31) 

so that 

cttx + 0t 
= - -  q- 2)k3ot(t) ~ + ~(t)q('q) (32) 

ot 

which, combined with (10), gives the reduction III.A.2 of  Hood (1995). 

3.1.3. The reduction III.A.3 of Hood (1995) can be obtained by taking 

c7 ( r q ~ )  ) d ~ = - ~ + c 8 ,  o - = c 9 e x p  - - - d - q  (33) 
\ J0 

3.2. ~ = orx = 0. Without loss of generality, one supposes the reduced 
variables in this case be 

= "q = t (34) 

Setting 

fo( o ) ~ = c l o  exp - 2  p('r) d'r dt + cll, (L ) or = cl2 exp q(a') dr  

(35) 

From (17), it follows that 

13 = 131(x, t) + p(t)x + (x + et2(t))q(t) 

where 

(36) 

= (37) 
131(x, t) 2 ~  2(l)2t(~tx + at) d~tx + al 

Equation (36) is just the same as the reduction ansatz of III.B. 1 from Hood 
(1995), where p(t) and q(t) satisfy 

2 
Pt + p2 = O, qt + q2 + t q = 0 (38) 
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3.3. d0x ~ 0, crx = 0. To obtain the reductions o f  III.D. 1 and III .D.2 o f  
Hood (1995), we consider two subcases: 

3.3.1. qb(~) = 2/~. The reduced variables are ~ = x + X~t, "q = t, and  

X~ = const. Setting cr = 1/t, oL2 = - h i ~ t ,  and a3 = - 2  in (19), we find 

2 x 
13 - - -  + - (39) 

x + h i t  t 

which is exactly the reduction III.D.1 o f  Hood  (1995). 

3.3.2. qb(~) = ca2 f0 ~ exp(- (Xt /2)~  2) d~ + cl3, hi = const. The reduced 
variables are ~ = et( t)x + O(t), "q = t. We impose 

cr = exp - q('r) d'r (40) 

Substitution o f  ~b and (40) into (21) yields 

. . . .  + q ( t ) ( x  + ot4(t)) (41) 

where 

oL2(t) 
a4(t) - (42) 

crt 

Equation (41)g ives  the reduction Ansatz III.D.2. o f  Hood  (1995). Then q( t )  

can be determined from (22) directly. 

and 

3.4. d0x = 0, gx r 0. Taking reduced variables 

"q = Ix(t)x + v( t )  (43) 

cr = exp - q('q) , OLl = - ,  
t 

in (23). Then from (23) it follows that 

oL 3 = 0 (44) 

which is the same as the reduction III .C.I  o f  Hood  (1995). 

13 x = t + Ix(t)q('q) (45) 
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4. NEW B.g, CKLUND TRANSFORMATIONS FOR THE 
BURGERS EQUATION 

Let us now construct some new B~icklund transformations of the Burgers 
equation (3) in terms of the MSMM. We first recall the known auto-B~tcklund 
transformations of the Burgers equation. Perform a truncated Painlev6 expan- 
sion for u in the form 

u = [3 + ~b___~x (46) 
+ 

where u and [3 satisfy the Burgers equation (3) and 

~b, + ~b= + [3~b x = 0 (47) 

If [3 = 0, (46) and (47) give the well-known Cole-Hopf  (Cole, 1951; 
Hopf, 1950) transformation. When [3 = d~, we find the following auto- 
Backlund transformation: 

2+x 
u = + + - -  (48) + 

where ~b also satisfies the Burgers equation (3). 
The B~icklund transformation (48) was first discovered by Fokas (1979) 

using the method of Lie symmetries. The general form of the auto-B~icklund 
transformation (46) and (47) was pointed out in Weiss et al. (1983). to obtain 
new B~icklund transformations of the Burgers equation, we use the truncated 
multiple singular manifold expansion for u, namely 

~ 2+ix 
U = [3 + (49) 

i = 1 ~ i  

where [3 = [3(x, t) and d~i(x, t), i = 1, 2 . . . . .  n, are analytic functions of (x, 
t) in a neighborhood of the manifold { ~bi = O, i = 1, 2 . . . . .  n }. Inserting 
expansion (49) in equation (3), we obtain the following constraints on ~bl 
and [3: 

[3, + 1~ + 1313x = 0 (50) 
6.,  + ,I,~ + 136.~ = 0 

+._,., + 6 . _ , ~  + (f~ + ~ -~ )+ ._ , .~  = 0 

+n-2,,++.-2~x+([3+ 'I'"-'-----~ + 2 + ~ ) 6 . - 2 ~  = 0 
(~n- -  1 

, , ,  
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Solving the first of equation (51) for 13 and substituting it into (50), we find 
that +.  satisfies equation (12). 

If we assume 13 = 0 in (4.5) and (4.6), we obtain the generalized 
Cole-Hopf transformation 

+,,t + +,,x~ = 0 (52) 

,t,.-,., + + . - ,~  + ,1,---~-'I'n-,~ = o 

(])n- 2,t ~t" +n- 2,xx "}- ~ ~bn_ 1 q" r 2,x = 0 

+" + +'= + (2 j~  +jx~+'x = ~ 4'i} (53) 

Comparing the first of equations (53) with (52), we find ~bn-~ also satisfies 
equation (12). When n = 2, another form of B~icklund transformation (48) 
is found for the Burgers equation 

2d~z~ 2~b1~ 
u - + - -  (54) 

'1'2 +, 
Hence 62 and d~, solve (52) and (12), respectively. 

If we impose 13 = ~b,, in (50) and (51), a generalized auto-B/icklund 
transformation for (48) is obtained: 

+., + '1 '~ + '1 .6= = 0 (55) 

,1,.-2.,+,1,.-2.~+ + .+  ,1,._----~+ ,1,.-2.~=0 

Solving the first of equations (56) for ~b. and substituting it into (55), 
a detailed calculation shows that ~b._ 1 satisfies a trilinear PDE 

h2xh. - 2hxththx - 2h2xh~t - 4hxhxxhxt - 2hxhthxxx 

+ 3h,h~x + h 2 x h ~  - 4hflx~hxx~ + 3h  3 + 2h2th~x = 0 (57) 
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Equation (57) is a new integrable trilinear PDE to us. If n = 2, we find a 
B~icklund transformation which relate the Burgers equation and (57), namely 

2+2x 2+ix 
u = ,1,2 + + ( 5 8 )  

where u and ~b2 satisfy the Burgers equation, and ~bl solves (57). 

5. SUMMARY AND DISCUSSION 

In this paper we have reviewed and compared the MSMM developed 
by Estevez (1992; Estevez and Gordoa, 1995) and the EDM due to Hood 
(1995) as techniques for determining similarity reductions of nonlinear PDEs, 
using the Burgers equation as an illustrative example. A detailed analysis 
shows that the similarity reductions obtained by the EDM can also be derived 
by the MSMM, i.e., the MSMM is more general than the EDM. Some 
new B~icklund transformations which relate the Burgers equation and other 
interesting integrable nonlinear PDEs are obtained using the MSMM. 

Finally, we would like to point out some open problems. 
(i) In this paper, we have established the relationship between the MSMM 

and the EDM; we do not know whether all this analysis will eventually 
become a set of theorems. 

(ii) Estevez and Gordoa (1995) discussed the relationships among the 
single singular manifold method, the direct method due to Clarkson and 
Kruskal (1989), and the nonclassical method due Bluman and Cole (1969). 
It is particularly interesting to establish a connection among the EDM, the 
MSMM, and the conditional symmetry method. 

(iii) It would be of interest to determine whether the MSMM can be used 
to obtain new B~icklund transformations of other, integrable and nonintegrable 
nonlinear PDEs. 

We hope these problems will be solved in subsequent investigations. 
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